

CMS JetMet Meeting

HCAL JET MET

Missing Et status at low and high luminosity

Pál Hidas

RMKI Budapest

Content

HCAL JET

MET

- Generated rates (also for no pile-up)
 - All particles
 - Calorimeter scope
- L1 & L2.0 rates
- L2.2 rates @ low lumi only
- Rates @ 95% efficiencient cuts
- 95% efficient cuts

Event Statistics

HCAL

JET

MET

Pthat (GeV)	Low lumi	High lum
0-15	94802	95376
15-20	150000	148600
20-30	148500	151000
30-50	133304	145610
50-80	146141	149250
80-120	133500	100000
120-170	147500	149500
170-230	42000	45000
230-300	20000	20000
300-380	4500	14000
380-470	10750	12250
470-600	5100	9000

No pile-up generated rates

HCAL JET

MET

1 Hz threshold – all ~ 75 GeV, calo scope ~ 75 GeV

LEFT: all particles

RIGHT: calorimeter scope (|eta| < 5.)

Low lumi generated rates

HCAL

MET

JET

1 Hz threshold - L1 ~ 85 GeV, L2 ~ 90 GeV

LEFT: all particles RIGHT: calorimeter scope (|eta| < 5.)

pthat > 120 GeV needs more statistics

High lumi generated rates

HCAL JET

MET

1 Hz threshold – all ~ 175 GeV, calo scope ~ 170 GeV

LEFT: all particles RIGHT: calorimeter scope (|eta| < 5.)

pthat > 120 needs more stats

Low lumi rates

HCAL JET MET

1 Hz threshold –L1 ~ 125 GeV, L2 ~ 120 GeV 10 Hz threshold –L1 ~ 110 GeV, L2 ~ 105 GeV

ledges: PAW multiplied some ntuples, fixed, rerunning

Corrected low lumi rate

HCAL

JET

MET

"type 2 correction" (Sasha) calibrated jets (Et > 30 GeV) +out-of-cone towers

tower calib.: as if 30 GeV jets

statistics need is more apparent here in almost every channel

95% efficient cut

HCAL JET MET

After L2 correction the average MET is correct but the MET resolution is not reduced main source of MET resolution is energy measurement resolution (not: nonlinearity, magnetic field)

Rate at 95% efficient cut

HCAL

JET

MET

L2 performs much better than L1 for high MET L2.2 performs like L2.0 because sigma of MET is not reduced

High lumi L1 & L2.0 rates

HCAL JET MET

1 Hz threshold – L1 ~ 175 GeV, L2 ~ 170 GeV

10 Hz threshold - L1 ~ 160 GeV, L2 ~ 160 GeV

The need for stats is endless in every pthat bin but we can interpolate For L1 the PAW problem has been fixed, nice lines until the end of stats

95% efficient cut

HCAL JET

MET

L2 is more realistic then L1

Rate at 95% efficient cut

HCAL

JET

MET

L2 performs better than L1 after all

Reconstructed Met rates

HCAL

JET

MET

Drop of all 4 rates

- missing stats
- L2 rate is more realistic L1 rate seems to orbit around L2
 - L1 met scaled down
 - Higher threshold (LSB)
 - Max. jet Et (8-10 bits)
 - L1 resolution is worse
 - These two effects fight each other in the L1 rate

Summary of Met Rates (1)

HCAL JET MET

Main source of MET: resolution of the energy measurement

Summary of Met Rates (2)

HCAL JET MET

Pile-up has significant effect <MET> ~ <MET_no_pileup> * sqrt<pile-up> for moderate pthat

L2 Rates with 2 jet veto

HCAL JET

MET

dPhi(axes of 2 highest Et jets) > 0.5 better fights real missing Et (c,b,t jets)

L2 2 jet veto summary

HCAL JET MET

Drop of all 4 rates – missing stats of 15–50 GeV

Significant difference – only below 1 Hz, offline analysis cut

LEFT: dPhi > 0.5

RIGHT: dPhi > 1.0 and no monojet events

1j+met GEN low lumi rates

HCAL JET

MET

Helps to reduce the low energy mess

1j+met GEN high lumi rates

HCAL

JET

MET

Even better seen: helps to reduce the low energy mess

1 jet + met L2 rates

HCAL JET

MET

More statistics is needed

Summary

HCAL JET MET

The HF (cmsim) bug is cured by Salavat's filter

- L2 performs better than L1 for MET > ~ 70 GeV
- L1 thresholds (10 Hz) –low lumi :110 GeV, high lumi :160 GeV
- L2 thresholds (1 Hz) –low lumi:120 GeV, high lumi:170 GeV

Statistics

We need more